20 research outputs found

    Universal Barcode Detector via Semantic Segmentation

    Full text link
    Barcodes are used in many commercial applications, thus fast and robust reading is important. There are many different types of barcodes, some of them look similar while others are completely different. In this paper we introduce new fast and robust deep learning detector based on semantic segmentation approach. It is capable of detecting barcodes of any type simultaneously both in the document scans and in the wild by means of a single model. The detector achieves state-of-the-art results on the ArTe-Lab 1D Medium Barcode Dataset with detection rate 0.995. Moreover, developed detector can deal with more complicated object shapes like very long but narrow or very small barcodes. The proposed approach can also identify types of detected barcodes and performs at real-time speed on CPU environment being much faster than previous state-of-the-art approaches

    Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation

    Get PDF
    Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation

    Attitude sensors relative angular misalignment estimation in integrated navigation systems

    No full text
    When using modern navigation systems as part of an on-board system, the navigation task can be solved in several ways: using positional, velocity and angular corrections, and systems using measurements of various physical nature—radio, such as short-range and long-range navigation radio systems, GLONASS/GPS satellite global navigation systems, optical—celestial navigation systems—can operate as correctors. The best performance of INS and its sensors (gyroscopes and accelerometers) errors estimation can be obtained when all types of correction are implemented simultaneously. At the same time, it is particularly difficult to implement correction according to attitude parameters due to the fact that the measuring axes of the INS and correctors may not match on board of moving objects. Such a mismatch is commonly called relative angular misalignment. The paper considers a possible approach to the attitude sensors relative angular misalignment estimation in integrated navigation systems (NS), carried out in motion when the NS is in operating mode

    Quantum dots photoinduced charges dynamics – model of crystall lattice defects

    Get PDF
    We report the results of core-shell (CdSe/CdS) quantum dots study. Quantum dots sizes were evaluated as 2.0 and 2.9 nm from absorbance edge position. We suggest two types of traps, predict properties of these traps based on upconversion luminescence data and previous studies of quantum dots (CdSe cores only) and bulk CdS

    The Effect of the Carbon Tax Value on the Optimal Parameters and Characteristics of Coal Power Plants

    No full text
    The paper investigates the effect of the carbon tax on the optimal parameters and indicators of two coal power plants: a steam turbine power unit with coal dust burning in a steam boiler and an internal gasification combined cycle power plant. Sufficiently detailed mathematical models have been developed for the considered plants that are focused on calculating the flow rates of working fluids and coolants and thermodynamic parameters at all points of the flowcharts, as well as the structural characteristics of the plant elements. The problems of optimizing the parameters of these plants related to the problems of nonlinear mathematical programming are formulated. As an efficiency criterion, the price of electricity is used at given value of the internal rate of return on investment. Optimization calculations were carried out with a carbon tax in the range from 0 /tto140/t to 140 /t in increments of 20 $/t. It is shown that with an increase in the charge for emissions, the optimal efficiency of the plants increases, as well as the specific investment. Specific CO2 emissions are reduced. Throughout the entire range of carbon tax values, IGCC power plant has the best economic and environmental indicators

    Quantum dots photoinduced charges dynamics – model of crystall lattice defects

    No full text
    We report the results of core-shell (CdSe/CdS) quantum dots study. Quantum dots sizes were evaluated as 2.0 and 2.9 nm from absorbance edge position. We suggest two types of traps, predict properties of these traps based on upconversion luminescence data and previous studies of quantum dots (CdSe cores only) and bulk CdS

    Upconversion nanoparticles based on rare-earth elements

    Get PDF
    Using the hydrothermal method, we synthesized water soluble YVO4: Yb, Er nanoparticles with a size less than 10 nm. Nanoparticles exhibit intense luminescence in the green region due to Er3+ ions when excited by laser radiation at a wavelength of 980 nm as a result of the up-conversion process. Bright and stable luminescence also persists in an aqueous solution of nanoparticles. Based on experimental data, it can be argued that the objects obtained are promising in biological applications, as well as up-conversion phosphors

    Upconversion nanoparticles based on rare-earth elements

    No full text
    Using the hydrothermal method, we synthesized water soluble YVO4: Yb, Er nanoparticles with a size less than 10 nm. Nanoparticles exhibit intense luminescence in the green region due to Er3+ ions when excited by laser radiation at a wavelength of 980 nm as a result of the up-conversion process. Bright and stable luminescence also persists in an aqueous solution of nanoparticles. Based on experimental data, it can be argued that the objects obtained are promising in biological applications, as well as up-conversion phosphors

    Lightly Boron-Doped Nanodiamonds for Quantum Sensing Applications

    No full text
    Unlike standard nanodiamonds (NDs), boron-doped nanodiamonds (BNDs) have shown great potential in heating a local environment, such as tumor cells, when excited with NIR lasers (808 nm). This advantage makes BNDs of special interest for hyperthermia and thermoablation therapy. In this study, we demonstrate that the negatively charged color center (NV) in lightly boron-doped nanodiamonds (BNDs) can optically sense small temperature changes when heated with an 800 nm laser even though the correct charge state of the NV is not expected to be as stable in a boron-doped diamond. The reported BNDs can sense temperature changes over the biological temperature range with a sensitivity reaching 250 mK/√Hz. These results suggest that BNDs are promising dual-function bio-probes in hyperthermia or thermoablation therapy as well as other quantum sensing applications, including magnetic sensing
    corecore